HFKWH

SUBMINATURE AUTOMOTIVE RELAY

Typical Applications

Central door lock, Power doors&windows,Turning lamp control, Mirror adjustment,Seat adjustment,Speed-limit indicator control,Warm-up control,Wiper control

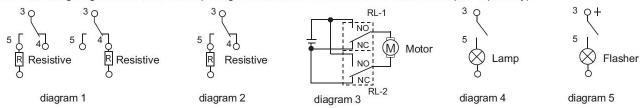
Features

- Tight structure and light weight
- High current contact capacity
 (Carrying current: 35A/10min. 25A/1h)
- Improved heat reisistance
- RoHS&ELV compliant

CHARACTERISTICS

Contact arrangement	1A, 1C					
Voltage drop (initial) 1)	Typ.: 50mV (at 10A)					
Voltage drop (initial) 1)	Max.: 250mV (at 10A)					
Max. continuous current ²⁾	35A (at 23°C, 10min)					
wiax. Continuous current	25A (at 23℃, 1h)					
Max. switching current ³⁾	NO: 35A					
	NC: 20A					
Max. switching voltage	16VDC					
Min. contact load	1A 6VDC					
Electrical endurance	See "CONTACT DATA"					
Mechanical endurance	1×10 ⁷ ops (300ops/min)					
Initial insulation resistance	100MΩ(500VDC)					
Dielectric strength ⁴⁾	500VAC					
Operate time	Max.:10ms (at nomi.vol.)					
Release time ⁵⁾	Max.: 5ms					
Ambient temperature	-40°C to 85°C					

Vibration resistance ⁶⁾	10Hz~55Hz, 1.5mm DA
Shock resistance ⁶⁾	98 m/s ²
Terminaltion	PCB ⁷⁾
Construction	Plastic sealed
Unit weight	Approx. 6g


- 1) Equivalent to the max. initial contact resistance is $100 \text{m}\Omega$ (at 1A 6VDC).
- 2) Test under the following conditions:
 - a.The relay is mounted on the PCB, the coil is applied with 100% rated votage;
 - b.The PCB board is a double layer board. The thickness of the copper foil is 4 oz (140µm),the width of each copper foil is 4.86x(1±5%)mm, the length of the copper foil is (50±1)mm, External conductor is 6.0mm²,and the Tg value of the PCB board is 150°C;
 - c. The sample orders were only tested.
- 3) At 23°C, 13.5VDC (100 cycles, resistive load).
- 4) 1min, leakage current less than 1mA.
- The value is measured when voltage drops suddenly from nominal voltage to 0VDC and coil is not paralleled with suppression circuit.
- 6) When energized, opening time of NO contacts shall not exceed 100µs, when non-energized, opening time of NC contacts shall not exceed 100µs, meantime, NO contacts shall not be closed.
- 7) Since it is an environmental friendly product, please select lead-free solder when welding. The recommended soldering temperature and time is (260±3)°C, (5±0.3)s.

CONTACT DATA⁵⁾ at 23°C

Load		Load current A			On/Off ratio		Electrical	Contact	Load wiring	
Load Load typ	type	12	1Z		On	Off	endurance	Contact material	diagram ⁴⁾	
voltage			NO	NC	1A	S	s	OPS	illateriai	diagram
	Resistive	Make	20	10	20	2	2	2×10 ⁵	AgSnO ₂	See
	Resistive	Break	20	10	20	2	2	2×10 ³		diagram 1
13.5VDC Resistive	Make	30	_	30	2	2	1×10 ⁵	$AgSnO_2$	See diagram 2	
	Break	30	_	30						
	Motor	Make	253)	_	253)	0.2 2	1×10 ⁵	$AgSnO_2$	See	
Locked		Break	253)	_	25 ³⁾	0.2		17.10	71551102	diagram 3

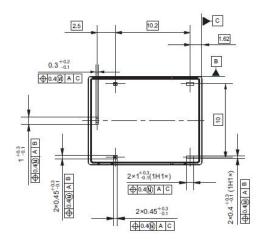
T 4			Load current A			On/Off ratio		Electrical	Contont	T 4i-i
Load Load type	Load	type	1Z		1A	On	Off	endurance	Contact material	Load wiring diagram ⁴⁾
		NO	NC	S		S	OPS	ulagialli /		
11) N		Make	902)	_	90 ²⁾ 8.8	1	9	1×10^{5}	A aSnO.	See
Lamp ¹⁾	Break	8.8	_	(85℃)				$AgSnO_2$	diagram4	
13.5VDC Lamp ¹⁾	Make	6×21W	_	6×21W	1	6	1×10 ⁵	AgSnO ₂	See	
	Break								diagram4	
Flasher	Make	3×21W		3×21W	0.365	0.365	2×10 ⁶	Special	See	
Flasher								Break	$AgSnO_2$	diagram5

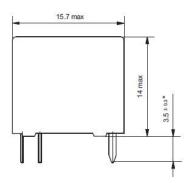
- 1) When it is utilized in flasher, a special AgSnO2 contact material should be used and the customer special code should be (170) as a suffix. Please connect by the polarity according to the diagram below.
- 2) Corresponds to the peak inrush current on initial actuation (cold filament).
- 3) Corresponds to the peak inrush current on initial actuation (motor).
- 4) The load wiring diagrams are listed below (Ratings of NO, NC are tested based on different samples seperately):

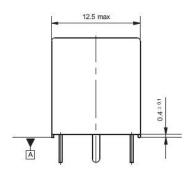
5) When the load voltage is at 24VDC or higher, or the applications conditions are different from the table above, please submit the detailed application conditions to Hongfa to get more support.

COIL DATA 23°C

Nominal voltage ¹⁾ VDC	Pick-up voltage VDC max.	Drop-out voltage VDC min.	Coil resistance $\times (1\pm 10\%)\Omega$	Power consumption W
12	7.3	1.0	225	0.64
24	14.4	2.2	720	0.8

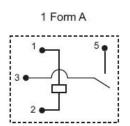

1)Other types on request.

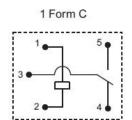

ORDERING INFORMATION

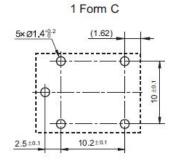

Н	FKWH /	12	-H	S	Т	(XXX)
Type HFKW	H: Standard					
Coil voltage	12: 12VDC 24:	24VDC				
Contact arrangement	H: 1 Form A Z:	1 Form C				
Construction	S: Plastic sealed ¹	Nil: Flux proofed				
Contact material	T: AgSnO ₂					
Special code ²⁾	XXX: Customer s	pecial requirement	Nil: Standard			

- **Notes:** 1) Contact is recommended for suitable condition and specifications if water cleaning or surface process is involved in assembling relays on PCB.
 - 2) The performance parameters of products with characteristic numbers shall be subject to the specific specifications provided by Hongfa.
 - 3) The customer special requirement express as special code after evaluating by Hongfa. e.g. (170) stands for flasher load. The performance parameters of products with characteristic numbers shall be subject to the specific specifications provided by Hongfa.

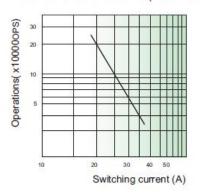
Outline Dimensions (1 Form A/1 Form C)



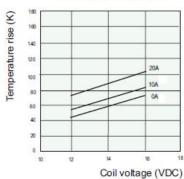



Rmark: * The additional tin top is max.1mm.

PCB Layout (Bottom view)


Wiring Diagram (Bottom view)

CHARACTERISTIC CURVES


Load curve (NO contacts, at 23°C)

Electrical endurancecurve (Motor locked)

HFKWH/12-ZST (XXX)

Coil temperature rise

HFKWH/12-ZST (XXX)

Test conditions: 0.2s ON, 2s OFF

Notes:The coil temperature rise requires the relay to be installed on the PCB board, The PCB board is a double layer board; The thickness of the copper foil is 4 oz (140µm), the width of each copper foil is 4.86x(1±5%)mm; The length of the copper foil is (50±1)mm, Installation spacing is 100mm.

Disclaimer

The specification is for reference only. See to "Terminology and Guidelines" for more information. Specifications subject to change without notice. In case there is specific criterion (such as mission profile, technical specification, PPAP etc.) checked and agreed by and between customer and Hongfa, this specific criterion should be taken as standard regarding any requirement on Hongfa product.

We could not evaluate all the performance and all the parameters for every possible application. Thus the user should be in a right position to choose the suitable product for their own application. If there is any query, please contact Hongfa for the technical service. However, it is the user's responsibility to determine which product should be used only.

© Xiamen Hongfa Electroacoustic Co., Ltd. All rights of Hongfa are reserved.

