

Ultraviolet EdixeonTM

Approved By Customer	Designer	Checker	Approval

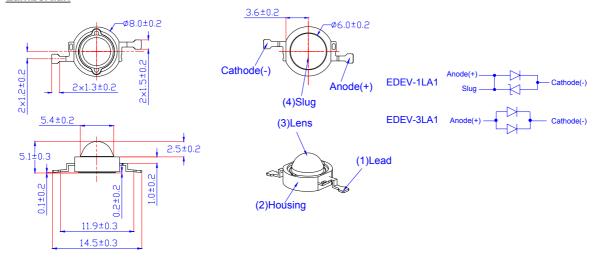
Date: 2006/07/31 Version: 1.1 Device No.: 3-RD-01-E0034 EDISON OPTO CORPORATION 4F, No. 800, Chung-Cheng Rd, Chung-Ho, Taipei 235, Taiwan Tel: 886-2-8227-6996

Ultraviolet Edixeon

Ultraviolet Edixeon emitters are one of the highest power LEDs in the world by Edison Opto. Ultraviolet Edixeon are designed for ultraviolet curing.

Features

- Low voltage operated
- Long operating life


Typical Applications

Ultraviolet curing

Package Outlines

Lambertian

Notes:

- 1. All dimensions are in mm.
- 2. Drawings are not to scale.
- 3. It is strongly recommended that the temperature of lead be not higher than 55° C.
- 4. It is important that the slug can't contact aluminum surface, it is strongly recommended that there should coat a uniform electrically isolated heat dissipation film on the aluminum surface.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
DC Forward Current for 1W	I _F	350	mA
DC Forward Current for 3W	I _F	700	mA
1W emitter Peak pulse current;(tp≤100µs, Duty cycle=0.25)	I _{pulse}	1000	mA
3W emitter Peak pulse current;(tp≤100µs, Duty cycle=0.25)	I _{pulse}	1500	mA
Reverse Voltage	V _R	5	V
LED junction Temperature	Tj	125	$^{\circ}\!\mathbb{C}$
Operating Temperature	T _{opr}	-30 ~ +110	$^{\circ}\!\mathbb{C}$
Storage Temperature	T _{stg}	-40 ~ +120	$^{\circ}\!\mathbb{C}$
ESD Sensitivity	V _B	500	V
Manual Soldering Time at 260°C (Max.)	T _{sol}	5	seconds

Electric and Optical Characteristics 1W at I_F=350mA & 3W at I_F=700mA (Tj=25°C):

Part No.	ltem	Symbol	Value			Units
Fait No.	item	Symbol	Min.	Тур.	Max.	Ullits
EDEV-1LA1	Radiometric Power		113.9	180		mW
EDEV-3LA1	Radiometric Fower	Ф∨	256.3	350		mW
EDEV-1LA1	Peak Wavelength	λР	395		410	nm
EDEV-3LA1		Al	395		410	nm
EDEV-1LA1	Forward Voltage	V _F	2.8	3.5	4.0	V
EDEV-3LA1		۷F	2.8	3.5	4.0	V
EDEV-1LA1	- Emission Angle	2Θ½		140		Degree
EDEV-3LA1		2072		140		Degree
EDEV-1LA1	Thermal Resistance	DO		20		C/W
EDEV-3LA1		Rθ _{J-B}		10		C/W

Note

- 1. Radiometric power is measured with an accuracy of \pm 10%.
- 2. Forward Voltage is measured with an accuracy of $\pm 0.1 \text{V}$
- 3. Wavelength is measured with an accuracy of \pm 0.5nm
- 4. All emitters are built with InGaN

JEDEC Moisture Sensitivity:

	Floo	r Life		Soak Ro	equirements	
Level	Time	Conditions	Sta	ındard	Accelerate	d Environment
	Tille	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
4	72hours	≦30℃ / 60% RH	96 +2/-0	30℃ / 60% RH	20 +0.5/-0	60℃ / 60% RH

Operating life, mechanical, and environmental tests performed on Edixeon package:

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
High Temperature High Humidity Operating Life	85°C / 85%RH, I_F = max DC	1000 hours	Note 2
Temperature Cycle	-40°C/100°C ,30 min dwell / $\!<\!$ 5min transfer	200 cycles	Note 2
High Temperature Storage Life	110℃	1000 hours	Note 2
Low Temperature Storage Life	-55℃	1000 hours	Note 2
Thermal Shock	-40 / 120 $^{\circ}\!$	200 cycles	No catastrophics
Mechanical Shock	1500 G, 0.5 msec pulse, 5 shocks each 6 axis		No catastrophics
Natural Drop	On concrete from 1.2 m, 3X		No catastrophics
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min, 1.5 mm, 3X/axis		No catastrophics
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec		No catastrophics
Solderability	Steam age for 16 hr, then solder dip at 260 $^{\circ}\mathbb{C}$ for 5 sec		Solder coverage on lead

Notes:

1. Depending on the maximum derating curve.

2. Failure Criteria:

Electrical failures

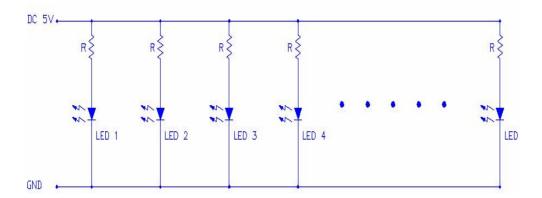
V_F shift >=10%

I_R<50uA @Vr=5V

Light Output Degradation

% lv shift >= 30% @1,000hrs or 200cycle

Visual failures


Broken or damaged package or lead

Solderability < 95% wetting

Dimension out of tolerance

EDISON OPTO CORPORATION

Burn-in Condition Edixeon Reliability

When we talk about MTBF of Edixeon, we can provide a formula for customers.

$$log(Life) = \frac{1,600}{Tj(^{\circ}C) + 273}$$

Life means the time light output becomes 70%

Tj (°C)	Life (hours)	Tj (°C)	Life (hours)
25	234,000	85	29,500
30	191,000	90	25,700
35	157,000	95	22,300
40	129,000	100	19,500
45	107,000	105	17,100
50	90,000	110	15,100
55	75,000	115	13,300
60	64,000	120	11,700
65	54,000	125	10,500
70	46,000	130	9,300
75	39,600	140	7,500
80	34,000	150	6,000

When we talk about MTTF of Edixeon, we can provide a formula for customers_ MTTF is assumed to be 100,000,000

The failure rates at different hours and different systems(LED quantity) are as below:

if there is 1 failure of 1 emitter in a system

Tj=75℃ is giving 0.01%(100ppm) at 10,000hrs

if there is 1 failure of 10 emitters in a system

Tj=75°C is giving 0.1%(1,000ppm) at 10,000hrs

if there is 1 failure of 1 emitter in a system

Tj=75°C is giving 0.05%(500ppm) at 50,000hrs

if there is 1 failure of 10 emitters in a system

Tj=75°C is giving 0.5%(5,000ppm) at 50,000hrs if there are 10 emitters

How to Know Tj in Your Application?

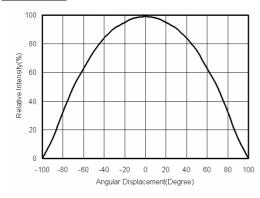
If it is 1W Edixeon, Rth(junction to case)=15°C/W

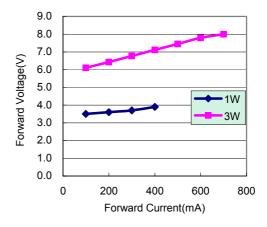
The thermal grease is 200um.

K(Aluminum PCB)=2.6 W/mk

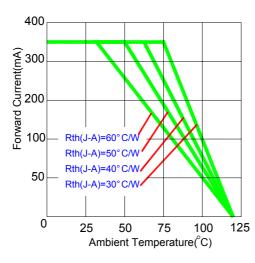
Then Rth(case to board)=
$$\frac{200}{2.6x(6.4/2)^2 \pi}$$
 =2.4 °C/W

The Rth between board and air is mainly dependent on the total surface air.

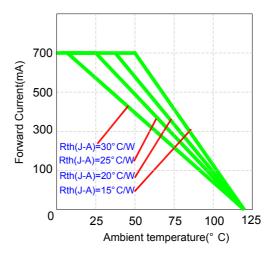

$$\begin{array}{lll} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$


ASSIST FORM about High Power LED Reliability(1W Edixeon)

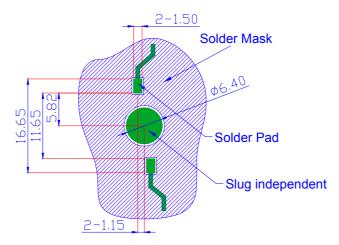
	Ts=45°C	Ts=65°C	Ts=85°C
Voltage	3.5V	3.5V	3.5V
Current	350mA	350mA	350mA
Wattage	1.2W	1.2W	1.2W
Heat	1.0W	1.0W	1.0W
Rth	15°C/W	15°C/W	15°C/W
Tj	60°C	80°C	100°C
L _{70%}	64,000hrs	34,000hrs	19,500hrs


Typical Radiation Pattern

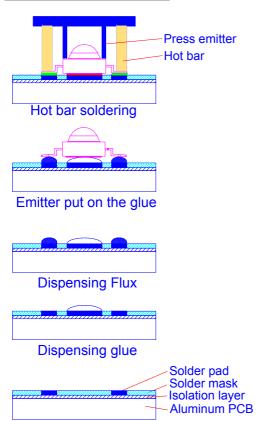
Lambertian



Typical Optical and Electrical Curves



Forward Current & Luminous Flux
For 3W emitter


Recommended Solder Pad Design

Note:

- 1. All dimensions are in mm.
- 2. The drawings are not to scale
- 3. Solder pad can't be connected to slug.

Recommend Solder Steps

Notes:

- Aluminum PCB material with a thermal conductivity greater than 2.0 W/mK.
- 2. Solder pad can't be connected to slug.
- The Thermal glue should be as thin as possible for better heat conductivity.
- During any assembly process touching lens is avoided. This will cause pollution or scratch on the surface of lens.
- Thermal glue with a thermal conductivity greater than 2.0 W/mK and the thickness must be less than 100µm.

Adhesive for Emitter to Aluminum PCB

Suggestion:

Ease of use

Non-solvent, One-part

Fast tack free

3 minutes at 25°C

No corrosion

Alcohol type of RTV

Low volatility

Low weight loss of silicone volatiles

Adhesion

Excellent adhesion to most materials without use of a primer

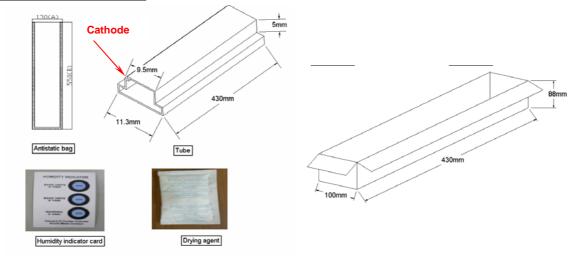
Dielectric properties

Cured rubber exhibits good dielectric properties

Excellent thermal stability and cold resistance

Cured rubber provides wide service temperature range

Typical Properties


Specification	Suggested Properties
Take-free time	3~10 minutes
Specific gravity	< 3 g/cm ²
Thermal conductivity	> 2.5 W/mK
Rth in using	< 1.8 °C/W
Volume resistance	> 1x10 ¹⁴
Lap shear adhesion strength	> 200 N/ cm ²
Tensile strength	> 4 Mpa

Thrust for Edixeon Lens

Lambertian Lens	5 kgf
Lens Type	Typical Thrust

EDISON OPTO CORPORATION

Package Specifications

Note

- 1. Inner antistatic bag standard.
- 2. A bag contains one humidity indicator card and drying agent.
- 3. 50pcs emitters per tube.
- 4. 20 tubes per bag, 1 K pcs per bag.
- 5. 2 bags per inner box, 2 K pcs per inner box.

Packing Step	Туре	Dimension(mm)	Emitter Q'ty(Max.)
1	Tube	430*13	50
2	Inner Box	430*100*88	1,000
3	Outer Box	460*196*135	2,000

EDISON OPTO CORPORATION

10