

ligh Power LED

Edixeon[™] Emitter

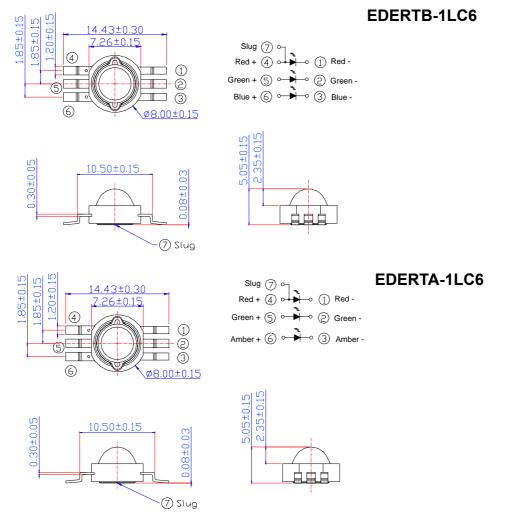
Approved By Customer	Designer	Checker	Approval

Date : 2006/07/31 Version : 1.2 Device No. : 3-RD-01-E0018 EDISON OPTO CORPORATION 4F, No. 800, Chung-Cheng Rd, Chung-Ho, Taipei 235, Taiwan Tel: 886-2-8227-6996 Fax: 886-2-8227-6997 http://www.edison-opto.com.tw

RGB RC Edixeon[™]

RGB RC Edixeon emitters are one of the highest flux LEDs in the world by Edison Opto. It is designed to satisfy applications of Solid-State lighting. It is designed to have three chips in one package. It has various colors for choice and can be independently controlled. More important, it can be pass reflow process.

Features


- Three chips (color) in one package
- Various colors for choice
- Independent control of each color
- More energy efficient than incandescent and most halogen lamps
- Low voltage operated
- Instant light
- Long operating life
- IR reflow process compatible

Typical Applications

- Up-lighters and Down-lighters
- Contour lights
- Ceiling lights
- Garden lighting
- Architectural lighting
- Beacon lights

Package Outlines

Notes:

- 1. All dimensions are in mm.
- 2. Drawings are not to scale.
- 3. It is strongly recommended that the temperature of lead be not higher than 55° C.
- 4. It is important that the slug can't be contact aluminum surface, it is strongly recommended that there should coat a uniform electrically isolated heat dissipation film on the aluminum surface.
- 5. Slug is short to red anode.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
DC Forward Current for each color	IF	350	mA
Peak pulse current;(tp≦100µs, Duty cycle=0.25)	I _{pulse}	500	mA
Total Wattage	w	3	W
Reverse Voltage	V _R	5	V
Forward Contact Voltage for all colors	V _{FC}	16	V
LED junction Temperature	Tj	150	°C
Operating Temperature	T _{opr}	-30 ~ +130	°C
Storage Temperature	T _{stg}	-40 ~ +150	°C
Soldering Temperature	JEDEC 020c	260	°C
ESD Sensitivity	V _B	500	V
Manual Soldering Time at 260°C (Max.)	T _{sol}	5	seconds

Notes:

1. Proper current derating must be observed to maintain junction temperature below the maximum.

2. LEDs are not designed to be driven in reserve bias.

3. Allowable reflow cycles are 3 times for each LED.

Part Name	Color	Flux			Units
T art Name	00101	Min.	Тур.	Max.	Onito
	Red	13.8	22		Im
EDERTB-1LC6	True Green	30.3	45		Im
	Blue	4.8	8		Im
	Red	13.8	22		Im
EDERTA-1LC6	True Green	30.3	45		Im
	Amber	13.8	22		Im

Luminous Flux Characteristics at I_F =350mA(Tj=25°C):

Part Name	Color		V _F		
Fait Name	Color	Min.	Тур.	Max.	Units
	Red		2.5		V
EDERTB-1LC6	True Green		3.8		V
	Blue		3.8		V
	Red		2.5		V
EDERTA-1LC6	True Green		3.8		V
	Amber		2.5		V

Forward Voltage Characteristics at I_F=350mA(Tj=25℃):

Dominant Wavelength Characteristics at I_F=350mA(Tj=25°C):

Part Name	Color	λd			Units
	00101	Min.	Тур.	Max.	Onits
	Red	620		630	nm
EDERTB-1LC6	True Green	515		525	nm
	Blue	460		470	nm
	Red	620		630	nm
EDERTA-1LC6	True Green	515		525	nm
	Amber	585		595	nm

Temperature coefficient of forward voltage Thermal Resistance Junction to Case at I_F =350mA(Tj=25°C):

Lens Item	Color	∆V _F /∆T		Rθ _{J-B}	
		Тур.	Units	Тур.	Units
	Red	-2	mV /℃	15	°C/W
EDERTB-1LC6	True Green	-2	mV /℃		°C/W
	Blue	-2	mV /℃		°C/W
EDERTA-1LC6	Red	-2	mV /℃		C/W
	True Green	-2	mV /℃	15	°C/W
	Amber	-2	mV /℃		°C/W

Note

- 1. Flux is measured with an accuracy of ± 10%.
- 2. Forward Voltage is measured with an accuracy of $\pm 0.1V$
- 3. Wavelength is measured with an accuracy of ± 0.5nm
- 5. All True green and blue emitters are built with InGaN
- 6. All red, red-orange and amber emitters are built with AlGaInP

JEDEC Moisture Sensitivity:						
	Flo	or Life	Soak Requirements			
Level	Time	Conditions Standard		Accelerated Environment		
Time		Conditions	Time (hours)	Conditions	Time (hours)	Conditions
2a	4 weeks	≦30℃ / 60% RH	696 +5/-0	30℃ / 60% RH	120 +1/-0	60°C / 60% RH

			SOAK REQU		JIREMENTS	
	FLOOR LIFE		STANDARD		ACCELERATED EQUIVALENT 1	
LEVEL	TIME	CONDITIONS	TIME (hours)	CONDITIONS	TIME (hours)	CONDITIONS
1	Unlimited	≤30°C/85% RH	168 +5/-0	85°C/85% RH		
2	1 year	≤30°C/60% RH	168 +5/-0	85°C/60% RH		
2a	4 weeks	≤30°C/60% RH	696 ² +5/-0	30°C/60% RH	120 +1/-0	60°C/60% RH
3	168 hours	≤30°C/60% RH	192 ² +5/-0	30°C/60% RH	40 +1/-0	60°C/60% RH
4	72 hours	≤30°C/60% RH	96 ² +2/-0	30°C/60% RH	20 +0.5/-0	60°C/60% RH
5	48 hours	≤30°C/60% RH	72 ² +2/-0	30°C/60% RH	15 +0.5/-0	60°C/60% RH
5a	24 hours	≤30°C/60% RH	48 ² +2/-0	30°C/60% RH	10 +0.5/-0	60°C/60% RH
6	Time on Label (TOL)	≤30°C/60% RH	TOL	30°C/60% RH		

Note

1. The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life	25℃, I _F = max DC (Note 1)	1000 hours	Note 2
High Temperature High Humidity Operating Life	85℃ / 85%RH, I _F = max DC	1000 hours	Note 2
Temperature Cycle	-40 $^\circ\!\mathrm{C}/100^\circ\!\mathrm{C}$,30 min dwell /<5min transfer	200 cycles	Note 2
High Temperature Storage Life	110℃	1000 hours	Note 2
Low Temperature Storage Life	-55℃	1000 hours	Note 2
Thermal Shock	-40 / 120 $^\circ\!\mathrm{C}$, 20 min dwell /<20 sec transfer	200 cycles	No catastrophics
Mechanical Shock	1500 G, 0.5 msec pulse, 5 shocks each 6 axis		No catastrophics
Natural Drop	On concrete from 1.2 m, 3X		No catastrophics
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min, 1.5 mm, 3X/axis		No catastrophics
Solder Heat Resistance (SHR)	260℃ ± 5℃, 10 sec		No catastrophics
Solderability	Steam age for 16 hr, then solder dip at 260 $^\circ\!\mathbb{C}$ for 5 sec		Solder coverage on lead

Operating life, mechanical, and environmental tests performed on Edixeon package:

Note

1. Depending on the maximum derating curve.

2. Failure Criteria:

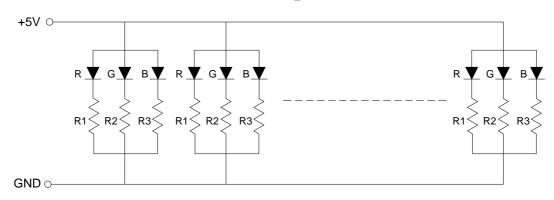
Electrical failures

V_F shift >=10%

I_R<50uA @Vr=5V

Light Output Degradation

% lv shift >= 30% @1000hrs or 200cycle


Visual failures

Broken or damaged package or lead

Solderability < 95% wetting

Dimension out of tolerance

Burn-in Condition RC Edixeon Reliability(I_F=350mA)

When we talk about MTBF of Edixeon, we can provide a formula for customers.

Tj (°C)	Life (hours)	Tj (°C)	Life (hours)
25	234,000	85	29,500
30	191,000	90	25,700
35	157,000	95	22,300
40	129,000	100	19,500
45	107,000	105	17,100
50	90,000	110	15,100
55	75,000	115	13,300
60	64,000	120	11,700
65	54,000	125	10,500
70	46,000	130	9,300
75	39,600	140	7,500
80	34,000	150	6,000

Life means the time light output becomes 70%

When we talk about MTTF of Edixeon, we can provide a formula for customers

The failure rates at different hours and different systems(LED quantity) are as below:

if there is 1 failure of 1 emitter in a system

Tj=75℃ is giving 0.01%(100ppm) at 10,000hrs

if there is 1 failure of 10 emitters in a system

Tj=75℃ is giving 0.1%(1,000ppm) at 10,000hrs

if there is 1 failure of 1 emitter in a system

Tj=75°C is giving 0.05%(500ppm) at 50,000hrs

if there is 1 failure of 10 emitters in a system

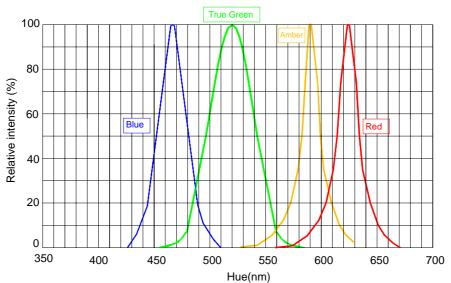
Tj=75 $^{\circ}$ C is giving 0.5%(5,000ppm) at 50,000hrs if there are 10 emitters

How to Know Tj in Your Application?

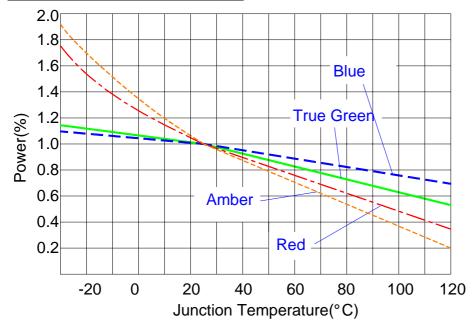
If it is Edisxeon, Rth(junction to case)=15°C/W

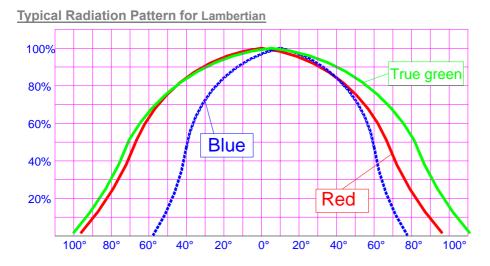
The thermal grease is 200um. K(Aluminum PCB)=2.6 W/mk

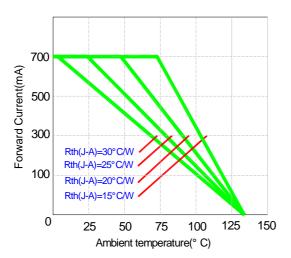
Then Rth(case-board)= $\frac{200}{2.6x(6.4/2)^2 \pi}$ =2.4

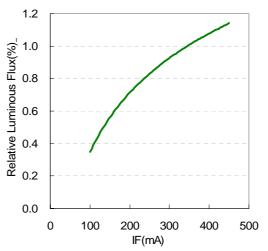

The Rth between board and air is mainly dependent on the total surface air.

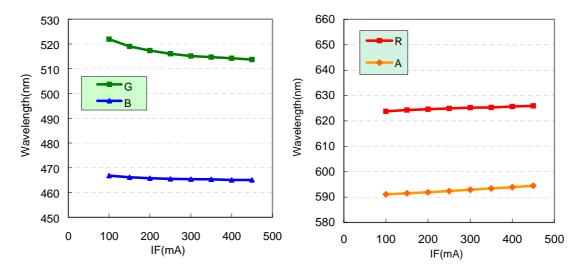
Rth(board-air)≒	500 Area(cm ²)	
If Area is 30cm ² If Area is 60cm ² If Area is 90cm ²	Rth=16.7 Rth=8.3 Rth=5.5	there for Rth(junction-air)= $(15+2.4+16.7)x3=92.3$ °C/3W there for Rth(junction-air)= $(15+2.4+8.3)x3=67.1$ °C/3W there for Rth(junction-air)= $(15+2.4+5.5)x3=58.7$ °C/3W


ASSIST FORM about High Power LED Reliability.(Ex:Blue color)

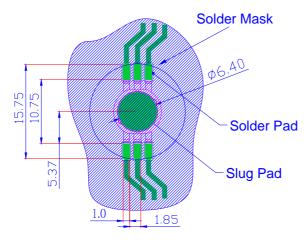

	Ts=45°C	Ts=65°C	Ts=85°C
Voltage	3.8V	3.8V	3.8V
Current	350mA	350mA	350mA
Wattage	1.3W	1.3W	1.3W
Heat	1.1W	1.1W	1.1W
Rth	15 ℃/W	15 ℃/W	15 ℃/W
Tj	61.5 °C	81.5 ℃	101.5 ℃
L _{70%}	62,000hrs	33,000hrs	20,000hrs



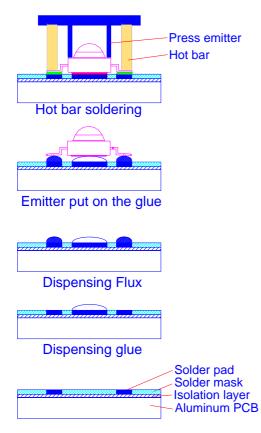



Typical Optical and Electrical Curves

Operating Current & Ambient Temperature

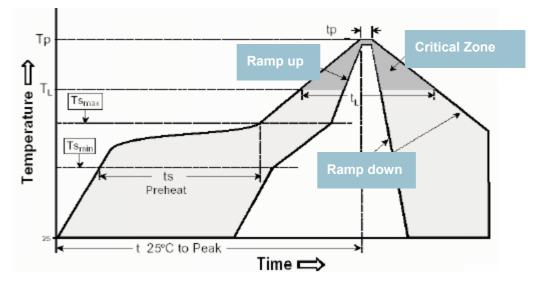


Forward Current & Luminous Flux


Recommended Solder Pad Design

Note:

- 1. All dimensions are in mm.
- 2. The drawings are not to scale.
- 3. Solder pad and slug pad must be independent.


Recommend Solder Steps

Notes

- 1. Aluminum PCB material with a thermal conductivity greater than 2.0 W/mK.
- 2. Solder pad can't be connected to slug.
- 3. The Thermal glue should be as thin as possible for better heat conductivity.
- 4. During any assembly process touching lens is avoided. This will cause pollution or scratch on the surface of lens.
- Thermal glue with a thermal conductivity greater than 2.0 W/mK and the thickness must be less than 100µm.

Recommended profile for reflow soldering

Adhesive for Emitter to MCPCB

Suggestion:

Ease of use

Non-solvent, One-part

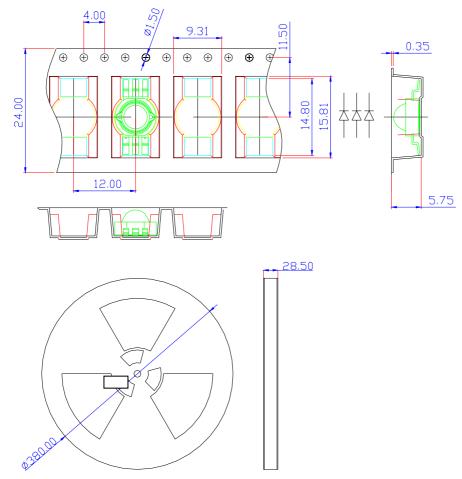
- Fast tack free
 - 3 minutes at 25°C
- No corrosion

Alcohol type of RTV

Low volatility

Low weight loss of silicone volatiles

Adhesion


Excellent adhesion to most materials without use of a primer

Dielectric properties

Cured rubber exhibits good dielectric properties

Excellent thermal stability and cold resistance
Cured rubber provides wide service temperature range

Package Specifications

Notes:

- 1. All dimensions are in mm.
- 2. There are 1000pcs emitters in full reel
- 3. There is a reel in a bag
- 4. There are 2 bags in an inner box
- 5. There are 5 inner boxes in an outer box
- 6. A bag contains one humidity indicator card and drying agent

Packing Step	Туре	Dimension(mm)	Emitter Q'ty(Max.)
1	Reel	Ф380*28.5	1,000
2	Inner Box	400*385*56	2,000
3	Outer Box	425*405*320	10,000